Archive for the ‘Outreach’ Category

Orkney and beyond

I used to believe that planes always landed on runways.

Orkney has a way of stopping you from taking things for granted.

oisf-logoI was up to speak for the second time at the Orkney International Science Festival, which is organised by Howie Firth – one of the most enthusiastic men I have ever met. He has a way of making you feel that each thing you say is the most interesting thing he’s ever heard. So it was with his usual infectious enthusiasm that I was invited up to speak about Botanica Mathematica and the links between maths and knitting.

With true Orcadian hospitality, Howie’s invitation didn’t mean that I came up to give my talk and then had to leave immediately after, but was an opportunity to have a holiday and time to explore the islands. Last year my companion Albert and I investigated the Mainland, seeing the amazing neolithic site of Skara Brae (the best-preserved prehistoric site I’ve ever seen), the stone circles of Brodgar and Stenness and the amazing coastline at Yesnaby. This year, it was time to venture further afield…

Orkney Map with North RonaldsayThe weather forecast had promised an overcast but dry and mild day for flying to North Ronaldsay. Nothing could have been further from the truth. Morning broke to gale force winds and torrential rain, neither of which eased up for the entire day. Apparently a storm system had come in from the north east, bringing vengeance on Orkney and Shetland but leaving the rest of the UK to enjoy beautiful warm sunshine. Sigh.

To say that I was scared of the impending flight was an understatement. It was basically a flying minibus – notionally with 9 seats, but one of those seats being next to the pilot. The pilot in our case was Rebecca Simpson, a cheerful blonde woman of about 30 , who seemed amused at the terrified looks on our faces. We had a 30-second safety briefing, were told to buckle our seatbelts and then the propellers went to full throttle.

I can easily say that the flights that day were the best I have ever been on. The plane needed hardly any runway before it was in the air, buffeted by the winds and quickly gaining height to give us a spectacular view of the azure blue of Orkney’s various harbours. Our first stop was Papa Westray, which is mainly famous for having the shortest scheduled flight in the world – less than 2 minutes over to the neighbouring island of Westray – which comes with its own certificate.

The "airport" at Papa Westray

The “airport” at Papa Westray

Despite my lack of certificate, I was glad that I was on the longer flight from Kirkwall, with time to enjoy the views and the feel the force of the weather blowing us around. Our landing on Papa Westray really showed off Rebecca’s skill; the winds forcing us to approach the runway facing about 45 degrees away from it, but turning at just the last moment to achieve a perfect landing. I was also incredibly amused at Papa Westray’s “airport” – bascially just someone’s house.

Five minutes later we had landed on North Ronaldsay, and were gratefully met by Tommy Muir, who was going to give us a tour of the island. Our original intention was to have a day of hiking about the island, but the weather meant that we didn’t want to be outside for more than a few minutes at a time, and were glad of the shelter of his van!

(C) Lis Burke

Seaweed eating sheep

North Ronaldsay is about 3 miles long and is mainly famed for two things: having the tallest land-based lighthouse in the UK, and for having seaweed eating sheep. In 1832 a dyke was built around the island and the native sheep were exiled there to make space on the island for more lucrative breeds of sheep and cow. The hardy creatures learnt how to survive on the seaweed and became renowned for their resilience, intelligence, tasty meat and soft wool. (Indeed, few sheep breeds have their own sheep fellowship!)

North Ronaldsay once had as many as 500 people living on it; today there are no more than 50. Climate change has meant that the land is no longer suitable for growing crops on, and so people have left as they realise there is no work for them to do. There is a school there, but only one child to attend it – teachers are flown in from the mainland to provide art, sports and history lessons. Some tourists do come, seeking the tranquility and remoteness of the place, and often to watch the seals and birds on the coast. Last year there was apparently a walrus who visited the island!

Despite a wet and windy day, we were sad to leave and were determined to visit again on a sunnier day.

Me with our amazing pilot Rebecca

Me with our amazing pilot Rebecca Simpson

Rebecca was there with her plane to take us home, and this time there was a dog occupying one of seats! He seemed completely nonplussed by the turbulence of the plane – he’d probably been on more flights in his life than me! Our stop in Sanday on the way home was another adventure. The direction of the wind made landing on the runway very difficult, so Rebecca simply landed at right-angles to the runway, into a field instead! She seemed to love the challenge of the weather conditions, but told us afterwards that the winds were quite mild compared to what she’d had to deal with before.

Back in Kirkwall airport, the giant runway with all its lights seemed far too easy for Rebecca, and we knew that no flight we ever took would be quite as exciting again. My talk on Monday night was well received and I’m hopeful of getting some new binary bonsais and hyperbolic chanterelles to add to our collection. The hospitality and enthusiasm of everyone I’ve met in Orkney has meant that I will no doubt be back for many years to come, always finding a new adventure and wonders to explore.

And, if this story has inspired you to visit Orkney and talk about science, get in touch with Howie and he’ll no doubt be eager to have you visit to speak at his science festival!

Giant 4D buckyball sculpture

4D buckyball Zome sculpture (c) Graeme Taylor

This is a model of a mathematical structure called a “Cantitruncated 600-cell”, colloquially known as a 4D buckyball. It took twenty people five hours to build and contains over 10,000 pieces of specialised plastic called Zometool. Such a model has never been seen in the UK before and I’m incredibly proud to have been able to organise its creation in Edinburgh last week.

The sculpture perches at the top of the main staircase in Summerhall, a great arts venue which used to be the University of Edinburgh’s veterinary school. The hall in which we put together those pieces of plastic was no doubt designed for dissecting cows or lecturing students about the removal of dogs’ testicles. Instead, Monday’s event (held as part of the University’s Innovative Learning Week) led our students into looking at the anatomy of geometry and playing with very different sorts of balls.

So what is a “Cantitruncated 600-cell”? The description on Wikipedia is less than enlightening. (It does, however, give some other cool names for this shape, including the “Cantitruncated polydodecahedron” and “Great rhombated hexacosichoron“.) Basically, the 600-cell is a shape made up of 600 tetrahedra (which in turn are 3D shapes made of 4 equilateral triangles) joined so that 20 of them meet at each corner. To ‘truncate’ means to ‘chop off the corners’. If we chop off a corner of the 600-cell, we see a shape which has 20 triangular sides – this is another regular 3D shape called an icosahedron.

Chop corners off an icosahedron, and you get a football, or buckyball.

Chop corners off an icosahedron, and you get a football, or buckyball.

‘Cantitruncation’ means ‘truncate, then truncate again’. Truncating the icosahedron leaves us with a shape colloquially known as a buckyball, or football (see left). Putting these facts together, we see that our model is a 4D shape made of 600 tetrahedra, but where each corner has been chopped off and replaced by a buckyball.

I have written a lengthier and much better explanation of this for the School of Mathematics website so recommend that you read that for more details! Otherwise just let your brain gently simmer in the crazy complexities of 4-dimensional geometry.

Photographer (and mathematician) Graeme Taylor was there on the day to do time-lapse photography of the build, and you can watch his final video at:

You can also see photos on Flickr by the University’s photographer Dong Ning Deng (scroll right for more!). Our students had to work very hard to not only put this giant jigsaw together, but also to cope with the engineering challenge of building enough of a framework to not let the model collapse under its own weight. I have to say that the sound of cracking plastic haunted my dreams for some nights afterwards…

Our 4D buckyball will stay in Summerhall until the end of the Edinburgh International Science Festival (20 April) and will (hopefully!) form part of the festival’s Art Trail. So go and see it while it’s there and tell me what you think of it!

The Valknut Challenge

I’ve been lacking in time and inspiration for blogging for a while now, but hopefully will get back into it again now that some of the chaos of Semester 2 has passed. As my come-back article I wanted to write about a fantastic evening I had at the RBS Museum Lates at the National Museum of Scotland just over a week ago.

The Museum Lates happen three times a year and are a chance for adults to get into the museum after hours to look at the collections whilst enjoying a cocktail and some live music. But they are much more than that! Each Late is themed in some way, and the theme this month was ‘Vikings’ to accompany the museum’s special exhibit. So guests were encouraged to dress up as Vikings, get their faces painted, touch Viking objects, make Viking paraphernalia (but NOT horned helmets – they aren’t Viking!), listen to Viking stories and eat Viking food. It was the perfect opportunity for us to get in some stealth maths engagement…

Viking Museum Late

(From left) Joshua, Helene and Madeleine all Vikinged up and ready to go.

My co-conspirator in this project was Madeleine Shepherd (who you may remember from lots of previous projects, including the last Alice In Wonderland themed museum late and also the Mathematicians’ Shirts project), and on the night we had two lovely assistants: Helene Frossling (Madeleine’s colleague at ICMS) and Joshua Prettyman (an undergraduate on my maths outreach team). Together we presented the public with…The Valknut Challenge!

In Viking mythology, the Valknut was the special symbol of Odin, king of the gods. It consisted of three interlocking circles, but if you removed any one of the circles then the other two would fall apart and would not be linked together at all. The Valknut Challenge is: can you draw/make the symbol? If you haven’t seen this before, you should have a go before scrolling down to see the picture.

The Valknut symbol is often found on Viking stones where Odin is depicted going into battle or standing over fallen warriors. It’s not hard to see why the symbol would be synonymous with strength in battle: the three interlocking circles symbolise the strength we have in acting together which falls apart when we go it alone. The same symbol has been found in many civilisations – for example, signifying the Trinity in Christianity.

Valknut on Viking stone

The Stora Hammars stone showing a Valknut above a scene of human sacrifice and next to some warriors. Powerful stuff.

Mathematically the symbol is called the Borromean rings (named for the Italian Borromeo family who used the symbol on their coat of arms). There are actually infinitely many different ways of solving the puzzle, and the Valknut is a special case of a more general puzzle where you have n circles and have to interlink them so that removing one ring makes the rest fall apart. Such a link is called a Brunnian link and they are particularly cool topological objects. 🙂

Standard Borromean rings

The standard Borromean rings.

Non-standard Borromean rings

A different solution to the Valknut challenge.

Non-standard Borromean rings 2

And another solution!

Most people have created a Valknut/Brunnian link in the course of their lives without ever realising it. Every knot or link can be drawn as a braid, and the Valknut is actually the standard 3-stranded braid that girls do in their hair all the time. Try making one and pulling out a strand – you’ll find that the other two strands become instantly untangled. This means you can quickly make a braid and harness the power of Odin whenever you need it – handy to remember next time you find yourself in battle.

The next Museum Late will be on 17th May with the theme of ‘Dinosaurs’.  If you missed out this time around then make sure you get tickets early for the next one! Anyone have any ideas for some surreptitious Jurassic mathematics that we can do?

Wizard or mathematician?

“You’re not a mathematician – you’re a wizard!”

This was the verdict delivered yesterday by a group of Dungeons & Dragons fans who had come to ICMS for Doors Open Day, after being treated to some maths busking by me. I also think they went away convinced that I was a geomancer instead of a geometer – I really must work on my enunciation…

spatula

Spatulamancy: the art of using a humble spatula to predict the future?

[An interesting aside, geomancy is apparently one of the seven “forbidden arts,” along with necromancy, hydromancy, aeromancy, pyromancy, chiromancy (palmistry), and spatulamancy. Ah, I love Wikipedia.]

It’s been a stressful week for me, but culminated in a totally wonderful day of maths communication yesterday. In the morning I gave the first Edinburgh masterclass of the season to a group of 82 enthusiastic 13-year-olds, and some equally enthusiastic student helpers. When I commiserated with them on having to get up early on a Saturday morning, the response was “We’d always get up early for lectures if they were as interesting as this!”. Which is lovely and flattering for me, but really makes me sad that we aren’t doing enough in university to bring our subject alive. Of course not every lecture can be as fun as a masterclass, but there are far too many researchers for whom lecturing is a chore and who never make an effort to bring enthusiasm or interest to their subject.

I digress, but there was an interesting blog post on a related theme by Peter Rowlett this week. He asked whether it was possible to pursue a career in university teaching and lecturing whilst not being a researcher – a question I have full sympathy with as someone in exactly that position. For me the story has a happy ending: after a year and a half of trying to persuade the university that a full time outreach/teaching position was a Good Thing, I have finally got my contract extended to 3 years. It is great to know that the department and university value the things I do, but I would despair of being able to find a similar position were I ever to change universities. While good teaching and public engagement are listed as promotion criteria in many places, in practice they are rarely rewarded when compared with research output.

Another side of the story is that there are many people who do public engagement in their spare time who are not recognised for it. A job title such as mine (Mathematics Engagement Officer) can count for a lot, as my friend and collaborator Madeleine Shepherd has found many times. Although we’ve worked on many projects together, with her often the brains behind the ideas, emails proposing new engagement opportunities are often sent to me and rarely to her.

It was wonderful to see ICMS, where Madeleine works, being open to the public yesterday for Doors Open Day. The building, on South College Street, is a converted church and still has an original stained glass window, among other interesting features.

Doors Open Day at ICMS, featuring Penrose tiles, chaotic pendulum and magnets, Tantrix, and me busking to three D&D fans. Click photo for more ICMS images.

This was the first year it had opened as part of Doors Open Day and we had no idea how many visitors would turn up. In the end I think the count was at 229, most of whom were lured in by the promise of maths puzzles rather than an interest in the building itself. I was only able to attend in the afternoon (due to the masterclass in the morning) and had a huge amount of fun showing people my favourite topological tricks, card tricks and mathematical puzzles. Even those of the public who proclaimed they were bad at maths went away enthused by what they had learnt and wanting to share their new knowledge with friends and family. I hope that we can run such events more frequently instead of waiting for Doors Open Day every year!

This hope is not a forlorn one, as I have big plans brewing… I am currently recruiting undergraduates and postgraduates to be on my new Maths Outreach Team (with unfortunate acronym MOT), and hope to have a team of 10 people trained up and ready to engage by the middle of October. Once they are unleashed on the unsuspecting city of Edinburgh, there will be no end to the school workshops, festival exhibitions, website articles and puzzles, public lectures and impromptu maths busking. At least, that is the plan. If you know of any maths undergrads who would be interested in this, please spread the word!

On that note, it is time for me to head off and hatch more nefarious outreach plans. Please do leave a comment if you were at Doors Open Day, my masterclass, or if you have comments on the difficulties of being rewarded for good outreach and lecturing. Until next time…

A Night in Wonderland

On 18th May I was lucky enough to get involved with my first RBS Museum Lates at the National Museum of Scotland. These events happen about 3 times a year and are a chance for the (over 18) public to come back into the museum after hours and to get cosy with the exhibits with a cocktail and live band. It’s also a chance for science (and arts!) communicators like me to run an activity and get some surreptitious education into the evening.

http://www.flickr.com/photos/peperico/4043195345/The theme for this month’s Museum Late was “A Night in Wonderland”, so there were lots of top hats, white rabbits and red queens! (See lots of photos of the event on the Museum’s Flickr page.) Knowing that Lewis Carroll (real name Charles Dodgson) was a mathematician and logician as well as nonsense-poem writer, it seemed wrong for there not to be a mathematical component to the evening so I got together with Madeleine Shepherd (from ICMS) to brainstorm some ideas…

Our first idea was to get the public to make some Fortunatus’ purses. A Fortunatus’ purse appears in the novel Sylvie and Bruno by Lewis Carroll and is based on the old tale of Fortunatus, who has a purse which replenishes itself with money as often as coins are drawn from it. If you read the book you’ll find instructions for making such a purse by sewing together the edges of 3 handkerchiefs in an unexpected way.

FortunatusPurse Step 1

‘You shall first,’ said Mein Herr, possessing himself of two of the handkerchiefs, spreading one upon the other, and holding them up by two corners, ‘you shall first join together these upper corners, the right to the right, the left to the left; and the opening between them shall be the mouth of the Purse.’

FortunatusPurse Step 2

Now, this third handkerchief,’ Mein Herr proceeded, ‘has four edges, which you can trace continuously round and round: all you need do is to join its four edges to the four edges of the opening…’

The mathematical object created is one which has no inside or outside – it is called non-orientable, and is (of course) not possible to make in 3 dimensions without part of the purse intersecting itself. Some of you may be thinking that this is a Klein Bottle, but it is actually a different creature called a Projective Plane.

However, whilst doing the practice run for the purse-making, we found that it took quite a long time, was fairly fiddly and would involve giving drunk people sharp needles. Probably not the best idea. (But we might do this in a future maths/craft event!)

So instead we came up with the “Snark Constellation Challenge”, inspired in equal parts by the Lewis Carroll poem The Hunting of the Snark and by a mathematical object in graph theory called a snark. Visitors were invited to play a game which involved colouring the lines between stars in a constellation, and were challenged to colour the lines using only 3 colours.

Petersen Graph

Can you colour the lines with 3 colours so that at each star, 3 different colours meet?

There were two games the visitors could play: working collaboratively to find a colouring of all the lines, or working competitively to be the last person to draw a valid line. Have a go at the puzzle and see if you can colour the lines before reading on!

Continue reading

Edinburgh Sci Fest 2012 (Part 2)

Welcome back to part 2 of my write up of our exhibit at the Edinburgh International Science Festival. As you may remember, we were running a series of games and activities to test people’s probability skills and to see how people would react to the stats in a courtroom. In this post I will go through the solutions to the various questions we asked, so if you haven’t had a go at them yet then make sure to have a go now!

Continue reading

Edinburgh Science Festival 2012

Hello maths fans!  It’s been a very busy semester for your favourite geek sheep: sorting out activities for undergrads in Innovative Learning Week, lecturing Y1 undergrads in Proofs & Problem Solving, organising business/academic networking events, doing an art/science exhibition, and running an exhibition at the Edinburgh International Science Festival. Hopefully now that I have some time, you can look forward to blog posts about all of these things. 🙂

csi-museumToday’s post is about our science festival fun. We (the School of Maths) teamed up with the School of Chemistry and went for a CSI-themed activity.The premise was that a priceless Egyptian vase had been stolen from the Museum and the visitors had to work out whodunnit. Using chemistry they had to analyse fingerprints and blood samples, and use UV and infrared data to identify substances found at the scene of the crime. After deciding on their prime suspect, they came over to the maths section, which was the courtroom. Here they had to weigh up the probabilities and statistics and then decide on whether their suspect was innocent or guilty.

Just as in real life, we didn’t reveal who actually did it, because we often don’t know for sure. And actually, we hoped that (despite all the evidence) the visitors would vote ‘Innocent’ because the evidence certainly didn’t prove anything beyond all reasonable doubt.

cocaine next to a £20 note

Most £20 notes have traces of cocaine on them.

I’ve had my heart set on doing something like this for a while because I wanted to publicise the great work that our Forensic Statisticians (Colin Aitken and Amy Wilson) are doing right here in Edinburgh. They are analysing the occurence of drugs like cocaine on banknotes to help the police decide when someone is really a drug dealer. Apparently (and don’t quote me on this) most £20 notes (like, over 80%) have got traces of cocaine on them, so the police need help in deciding when the notes have been involved in drugs crime or when they have just accidently been placed next to the ‘dirty’ notes in a shop till.

Colin has also appeared as an expert witness in a few trials and has helped to write books to educate judges and lawyers about statistics. Like the general population, judges and lawyers often have a very bad intuition about probabilities. But unlike the general public, their decisions can really affect people’s lives. The classic example is the Sally Clark case. An expert witness for the prosecution claimed that there was a 1 in 73 million chance that two cot deaths could happen naturally in the same family, and therefore that Sally must have murdered her children. Not only was this statistic wildly wrong (the actual figure is about 1 in 100,000) but the conclusion of guilt is also wrong. Neither side took into account the probability of her innocence: despite the unlikelihood of double cot death, double murder is (statistically) even more unlikely. Such a mistake is called the Prosecutor’s Fallacy. In Sally’s case, it led to her spending 3 years in prison for a crime she never committed and then committing suicide a few years after she was freed.

So anyway, the idea behind our science festival exhibit was to show people how bad they were at judging probabilities and to introduce the idea of Bayesian Statistics (which is behind things like the Prosecutor’s Fallacy). Have a go at these questions and see if you can solve them! Answers will be provided in the next blog post.

Goat on a Ferrari

The Monty Hall problem assumes you'd rather win a car than a goat. This is not true for everybody.

1) One of the most famous examples of conditional probability is called the Monty Hall problem, or the Car-Goat problem. You are on a gameshow, trying to win a car. You definitely don’t want to win a goat. There are three doors, behind which the host of the show has hidden 2 goats and a car. You choose the door which you think conceals the car. The host then opens a different door to reveal a goat. Finally, you get to choose: should you stick with your original choice of door, or should you swap? Or does it make no difference?

2) On very similar lines is the following queston. I flip two coins and tell you at least one of them is a head. What’s the chance that the other one is also showing a head?

3) In a lottery there are a 10 numbers in a bag and you win the jackpot if you correctly predict which 4 numbers get pulled out. What are the chances of winning the jackpot? What are the chances of predicting 3 out of the 4 numbers?

4) If 100 people each flip a fair coin 5 times, how many of them will we expect to flip 5 heads?

5) On the wall there is a calendar for 2012. Visitors to the museum put their birthday on the chart as they come in. After how many visitors do we expect to see the first shared birthday? (I.e. two people with the same birthday.)

confused old woman

Betty only sees what she thinks 2/3 of the time.

6) An eyewitness, Betty, says she saw a suspect leaving the scene of the crime, and that the suspect was wearing a hat. Betty is shortsighted and only correctly identifies hats 2 out of 3 times. That is, 1 time out of 3 she will think that someone is wearing a hat when they aren’t, and 1 time out of 3 she will think that someone isn’t wearing a hat when they are. If 10% of the Edinburgh population wears a hat, what are the chances that the suspect was really wearing a hat?

Needless to say, most visitors to the exhibit found these questions very difficult, but that was the point. We wanted to teach people not to trust their intuition when it comes to probability, and especially not if they are in a jury on a court case!

Many thanks to all who visited us in the Museum and played all our games with us! I hope you all had a good time and learnt something new. 🙂